Sam Pazicni

Position title: Assistant Professor of Chemistry


Phone: 608.263.5801

Room 9349, Department of Chemistry
1101 University Avenue
Madison, WI 53706

Research Website
Pazicni Group
Research Interests
chemistry learning and assessment; visiospatial skills and reasoning; equity and inclusiveness
Sam Pazicni


  • B.A. 2001, Washington and Jefferson College
  • Ph.D. 2006, University of Wisconsin, Madison
  • Postdoctoral fellow at University of Michigan, 2006-2009



Our work combines a deep knowledge of Chemistry (its big ideas, practices, and scientific culture) with methods and models from education, cognitive science, linguistics, and social psychology. In doing so, we examine issues related to how students learn chemistry, and inform the design of instructional materials and teaching strategies. We are particularly interested in:

  • Mechanisms of Language and Learning Chemistry. Chemistry educators have long acknowledged issues with language and learning chemistry. However, a much deeper understanding of how language impacts chemistry learning is needed to have an impact on classroom practice. We explore lexical ambiguity and conjecture that when words used in everyday English are used with different meanings in chemistry, concepts linked to those words are more difficult to master. We aim to identify such language in undergraduate chemistry education, characterize alternative conceptions brought about by it, and probe how instructors model its use.
  • Cognitive Equity. Factors that contribute to success in chemistry courses, or in mastery of chemical concepts, can inform pedagogical strategies in chemistry classrooms. It is important, however, that pedagogical strategies be informed not by solely focusing on students with perceived inadequacies (i.e., a deficit model, “fixing” the student), but by exploring classroom norms/structures that support the learning and assessment of all students (i.e., an achievement model). We are surveying potential compensatory factors that could mitigate a known achievement gap, that between students of low and high prior knowledge.
  • Inorganic Chemistry Education: Learning Symmetry. Molecular Symmetry is a foundational topic in Inorganic Chemistry. Practically, this classification is not surprising, as symmetry is fundamental to understanding other important concepts, such as group theory, molecular orbital theory, and interpretation of spectroscopic data (e.g., electronic absorbance, nuclear magnetic resonance, vibrational). Previous work suggests that symmetry’s putative demand on visualization and spatial reasoning skills may impede student mastery of this topic. Moreover, traditional symmetry instruction and assessment practices could impose the additional limitation of using two-dimensional representations to represent three-dimensional molecular structure. We are exploring what features are attended to and what strategies are used when students interrogate molecular structure using elements of symmetry.