Title: Organometallic Single-Molecule Magnets Containing Radicals and Bismuth
Bio:
Abstract:
Molecules that possess an energy barrier to spin inversion have intriguing potential applications in areas such as molecular spintronics and high-density information storage. To realize such applications, complexes featuring large spin-relaxation barriers (Ueff) and high magnetic blocking temperatures (TB) are required. Lanthanide ions are especially well-suited for the design of single-molecule magnets due to their large magnetic moments and magnetic anisotropy that originate from strong spin-orbit coupling of the 4f orbitals. Our approach to improve TB is to pursue multinuclear single-molecule magnets where strong magnetic exchange between lanthanide centers through the employment of radical bridging and bismuth ligands, respectively, is targeted. Such ligands possess diffuse spin orbitals that can penetrate the core electron density of the lanthanide ions where the 4f spin orbitals lie buried. Here, recent progress in the area of single-molecule magnets containing radical and bismuth ligands will be discussed (Fig. 1).1-7
[1] Delano IV, F.; Castellanos, E.; McCracken, J.; Demir, S. Chem. Sci. 2021, 12, 15219.
[2] Benner, F.; Demir, S. Chem. Sci. 2022, 13, 5818.
[3] Zhang, P.; Benner, F.; Chilton, N. F.; Demir, S. Chem 2022, 8, 717.
[4] Zhang, P.; Nabi, R.; Staab, J. K.; Chilton, N. F.; Demir, S. J. Am. Chem. Soc. 2023, 145, 9152.
[5] Benner, F.; La Droitte, L.; Cador, O.; Le Guennic, B.; Demir, S.; Chem. Sci. 2023, 14, 5577.
[6] Benner, F.; Demir, S. Inorg. Chem. Front. 2023, 10, 4981–4992.
[7] Pugliese, E. R.; Benner, F.; Demir, S. Chem. Eur. J. 2023. Accepted Article. DOI: 10.1002/chem.202302687.
Host: Prof. Eszter Boros