tfkuech

Thomas Kuech

Email address: tfkuech@wisc.edu

Room Number: 
4629 Engineering Hall
Telephone Number: 
608-263-2922
Group Affiliation: 
Kuech Group
Position Name: 
Professor
Path: 
Materials
Education: 

B.S. 1976, Marquette University
M.S. 1978, Marquette University
M.S. 1978, California Institute of Technology
Ph.D. 1981, California Institute of Technology

Milton J. and A. Maude Shoemaker Professor of Chemical Engineering
Beckwith-Bascom Professor

Also: Professor of Chemical and Biological Engineering

tfkuech's picture

Research Description

The ongoing development and availability of nanoscale probes, both within the research group and on campus, allow for detailed studies of the development of these next-generation materials and devices. The range of equipment and opportunities described above allow for the development of new research areas and provide an environment for innovation.

Our research group is actively involved in designing new in situ monitoring techniques and sensors. Such sensors will be required to control those processes important to the manufacture of semiconductor materials. These sensors will be able to detect, typically through optical techniques, the composition and deposition rate of the growing films. Defects and controlled microstructures are being developed that incorporate new functionality into these materials. We study the formation of semiconductor materials with controlled additions of impurities or dopants that can functionalize the materials for specific device applications. The chemistry, physics and electronic and optical properties of these impurities are studied through spectroscopic and physical techniques.

Many of the techniques used in making electronic and optical devices focus on the formation of thin-layer structures through materials deposition on a surface or modification of the near-surface region of the semiconductor. Thin layer structures, where the typical dimension can be much less than 100 nm, can exhibit many unusual and interesting properties attributed to their small physical size. Such structures form the basis of the quantum well laser and other important devices. We study many of these processes, such as the versatile technique of chemical vapor deposition. In this technology, thin semiconductor layers are grown onto a heated substrate through the reaction of gas-phase reactants to form a wide variety of materials.

In particular, we study the formation of Si-based materials for the next generation of semiconductor devices and compound semiconductor materials that are important in power and optoelectronic applications. The creation of new materials and their related processes in the modern electronics industry has led to many innovations that impact our daily lives. These processes create electronic and photonic devices through the near-atomic-level control of the composition and electronic structure of materials. Our work centers on developing such new materials, the novel processes required to generate them, and techniques of atomic level characterization.

Awards and Honors

Fellow, Materials Research Society 2016
Hilldale Award, UW-Madison 2014
Fellow, American Association for the Advancement of Science 2012
Senior Research Award, Alexander von Humboldt Foundation 2011
Member, National Academy of Engineering 2010

Selected Publications

Jackson DHK, Laskar MR, Fang S, Xu S, Ellis RG, Li X, et al.. Optimizing AlF3 atomic layer deposition using trimethylaluminum and TaF5: Application to high voltage Li-ion battery cathodes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and FilmsJournal of Vacuum Science and Technology A: Vacuum, Surfaces and Films. AVS Science and Technology Society; 2016;34.
Laskar MR, Jackson DHK, Guan YX, Xu SZ, Fang SY, Dreibelbis M, et al.. Atomic Layer Deposition of Al2O3-Ga2O3 Alloy Coatings for Li Ni0.5Mn0.3Co0.2 O-2 Cathode to Improve Rate Performance in Li-Ion Battery. ACS Applied Materials & Interfaces. 2016;8:10572-10580.
Jackson DHK, Laskar MR, Fang SY, Xu SZ, Ellis RG, Li XQ, et al.. Optimizing AlF3 atomic layer deposition using trimethylaluminum and TaF5: Application to high voltage Li-ion battery cathodes. Journal of Vacuum Science & Technology A. 2016;34.
Jackson DHK, Laskar MR, Fang SY, Xu SZ, Ellis RG, Li XQ, et al.. Optimizing AlF3 atomic layer deposition using trimethylaluminum and TaF5: Application to high voltage Li-ion battery cathodes. Journal of Vacuum Science & Technology A. 2016;34.
Guan YX, Forghani K, Schulte KL, Babcock S, Mawst L, Kuech TF. Enhanced Incorporation of P into Tensile-Strained GaAs1-yPy Layers Grown by Metal-Organic Vapor Phase Epitaxy at Very Low Temperatures. Ecs Journal of Solid State Science and Technology. 2016;5:P183-P189.