Syllabus - Chemistry 109H
Fall, 2016

<table>
<thead>
<tr>
<th>Class meeting</th>
<th>8:50 am MWF, 1361 Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor</td>
<td>Professor Randall Goldsmith</td>
</tr>
<tr>
<td></td>
<td>3309 Chemistry</td>
</tr>
<tr>
<td></td>
<td>Chem109HProf@chem.wisc.edu</td>
</tr>
<tr>
<td>Teaching Assistants</td>
<td>Alex Foote</td>
</tr>
<tr>
<td></td>
<td>Office Hours in 1201 Chemistry</td>
</tr>
<tr>
<td></td>
<td>afoote@chem.wisc.edu</td>
</tr>
<tr>
<td></td>
<td>Andrew Cavell</td>
</tr>
<tr>
<td></td>
<td>Office Hours in 1201 Chemistry</td>
</tr>
<tr>
<td></td>
<td>acavell@wisc.edu</td>
</tr>
<tr>
<td>Office Hours</td>
<td>Randall: Mon 9:50-10:50am, Wed 5:30-6:30pm, and by appointment.</td>
</tr>
<tr>
<td></td>
<td>Alex: Tue 5:30-6:30pm, and by appointment.</td>
</tr>
<tr>
<td></td>
<td>Andrew: Thur 5:30-6:30pm, and by appointment.</td>
</tr>
</tbody>
</table>

| **Course Website** | Select Chemistry 109-3 at the website http://courses.moodle.wisc.edu (login with your UW NetID if prompted), or go to https://ay16-17.moodle.wisc.edu/prod/course/view.php?id=194 |

Chemistry 109H is the honors version of Chemistry 109, a modern introduction to chemical principles that draws on current research themes. The honors section is for students with particularly strong backgrounds in chemistry and good preparation in physics and mathematics. Although the course involves only small amounts of formal calculus, familiarity with calculus and at least concurrent enrollment in calculus is important. Students who have NOT taken AND are NOT currently enrolled in calculus have done well in the class, but it is more difficult, please contact Professor Goldsmith if you are in this category.

The plan for the course is to develop the organizing principles of chemistry and apply them to questions of energy and global climate change. The unifying theme in the course is using fundamental concepts to think critically about energy production and consumption as well as their impact on the environment.

The course begins with a discussion of energy and moves to a rigorous description of thermodynamics, a topic that sits at the heart of energy production and use. After developing the concepts of entropy and free energy, the next step is applying them to spontaneous change and equilibrium, in both gases and solution. The combination of solution equilibrium and free energy leads into electrochemistry, a topic central to solar energy conversion and storage. All of these concepts turn on the interaction of molecules with light, and the course moves on to examine light, atoms, and molecules. Combining these ideas makes it possible to discuss atmospheric photochemistry. Because understanding the rates of processes is important to both energy production and reactions in the atmosphere, the course develops and applies
ideas of chemical kinetics. Nuclear reactions and their connection to energy production are the final topics in the course.

The course will move at a fast pace, and the presentation assumes a good familiarity with the language of chemistry, chemical calculations, and introductory physics. (There will be resources for individual review, but the elementary topics are not part of the coverage in class or discussion.)

Materials

Text
University Chemistry: In the Context of Energy at the Global and Molecular Level by James G. Anderson. This book is a preprint of a new text. Members of Alpha Chi Sigma (the chemistry fraternity and sorority) will sell it in the lobby of Chemistry for about $~70 (wiscard only). It comes in two volumes. We will also make pdf files of the text available on the website. Purchase of a physical copy of the textbook is recommended but not required. Since we are using an unfinished textbook, we’re going to offer extra credit points for finding errors in the book. One extra point will be awarded for each identification, up to a maximum of five extra credit points. We will keep a running list of identified errors. Errors can be reported by clicking on the Textbook Errors link on the Moodle site.

Lab Manual

Top Hat
We will be using the Top Hat app for in-class discussions and questions. Our course ID is 870984.

Notebook
Carbonless laboratory notebook with duplicate pages. (Available at local bookstores or from Alpha Chi Sigma.)

Safety Goggles
You are required to wear safety goggles when in the laboratory. We cannot admit you to the laboratory without goggles (safety glasses are not good enough!). Alpha Chi Sigma and local bookstores sell safety goggles that will fit over regular glasses.

Calculator
A scientific calculator. Graphing calculators are acceptable for use in the course.

Procedures and Policies

Website
The website for the course (which uses the Moodle course management system) is the place for you to obtain current information about the course, to find links to the material presented in the course, to find reference materials and resources, and to take online quizzes, and to check your grades.

The website lists all assignments, and it is important that you use it to see when quizzes and problems sets are due. You can navigate to the website from the URL http://courses.moodle.wisc.edu/ by selecting the link to Chemistry 109-3. You may need to login with you UW NetID.

Email
Your UW email address is our primary means of contacting you during the semester. We will send messages to the entire class and to individuals using those addresses. Please be sure to check that account or have it forwarded to an account you see regul-
larly. All emails to Professor Goldsmith should be sent to Chem109HProf@chem.wisc.edu

Class Meetings

Your attending class is important. The class meeting will expand on material in the text, point to the most important aspects of the material, and, if things go well, stimulate discussion. I will post copies of the notes I use in class, including the Top Hat questions and answers, on the course website (as a pdf file you can view and print) shortly after the lecture. These notes are detailed enough for you to revisit points you missed in class, but they are not a substitute for the text or for your own notes.

Quizzes

There will be an online quiz most weeks on the material that we will cover in roughly the following three class meetings. You will need to read the assigned chapter in the text and complete the online quiz at the website. The quiz deadline will be 8 am on either a Monday or a Wednesday. You must check the assignment for the coming week to learn the due date. I strongly urge you to complete the quiz prior to the absolute deadline. Two attempts will be allowed for each quiz. NO EXCEPTIONS will be made for late quizzes. You will be allowed to drop one quiz grade (because everyone has a bad day).

Problem Sets

There will be eleven problem sets during the semester that we will post on the website (usually on Fridays). Your solutions are due at the end of class the following week, NO EXCEPTIONS. You will be allowed to drop one homework grade (because everyone has a bad day).

The teaching assistants will grade your solutions of selected problems and will post copies of the solutions. You will receive partial credit for attempting all of the problems. We encourage you to discuss the problems with each other and work together. (See the information below on Tutorials.) You must generate, hand-in, and take responsibility for your own solutions. Do not copy another student’s work. Any consultation of previous years’ solutions sets is explicitly forbidden and will result in severe consequences.

Top Hat

You will use a personal response system operating on your phone to answer clicker questions posed in class. You must download the Top Hat App and register. For students with Microsoft Windows smart phones, the Top Hat App is not available, but a webportal version can be used. Students who do not intend to use a smartphone should contact Professor Goldsmith.

You will receive up to 50 points for responding (not necessarily getting them right!) to the clicker questions. Responding to more than 75% of all the questions during the semester earns you the maximum. Responding to between 50% and 75% of the questions earns you 25 points. Responding to fewer than 50% earns you no points. The threshold is set at 75% to allow for the times you forget your phone, are ill or absent for any other reason, or just don’t push the button. These are easy points to get!

Examinations

There are three examinations during the semester and a final examination, as listed in the course outline. The three examinations will be at 7:15 pm on Thursdays, September 29, October 27, and December 1. The examinations will last one and one-half hours.
The two-hour final exam is on Friday December 23rd, at 2:45 pm. Note, this date/time is determined by the Registrar.

I will announce and post the location of the exams prior to their dates. Please inform me during the first week of class if you have a conflict with any of the examination times.

Discussion You will meet with your teaching assistant for a discussion period each Thursday. Your teaching assistant will answer questions, discuss the material, and guide you through assignments that expand on the material discussed in the class meeting.

Tutorials There will be two-hour tutorial sessions for this course in Room 1371 on Wednesday and Thursday evenings from 7.00 to 9.00 pm. One of the teaching assistants will be available to help with problem sets and other questions you have. We encourage you to come to a tutorial to work with others in the class as well as with a teaching assistant. Additional review sessions and extra office hours will be announced prior to exams.

Laboratories The teaching assistants supervise the laboratories and direct your work. They will discuss related material, demonstrate unfamiliar techniques, and answer questions. The goal of the laboratory is to provide experience with a variety of techniques and to illustrate the principles we are discussing in lecture. We especially want you to learn to generate quantitative results and to interpret them critically.

You must come to laboratory prepared. Before coming to the laboratory, you must read and understand the procedure and complete the preparations described by your teaching assistant. Your teaching assistants will give you more detailed instructions for the pre-laboratory assignments. Lab write-ups will be due 24 hours after the lab ends.

Conflicts If a religious observance or an official University activity conflicts with any scheduled activity in this course, please notify me at the beginning of the semester. We will schedule a makeup date or otherwise accommodate you.

Illness If you are ill or have another unexpected reason that you are unable to attend an exam or laboratory please inform your teaching assistant and Professor Goldsmith as soon as possible. Sending an email message is the best means of informing us of the problem.

Grading We grade the exams on a numerical scale and provide letter grade guidelines for each exam. Problem sets, quizzes, and laboratory reports also receive numerical grades. The aggregate of the points you accumulate on these assignments determines your grade. The points for the various components are

- Exams (3@100 each) 300
- Final exam 150
- Problem sets, 1 dropped (11-1=10@15) 150
- Quizzes, 1 dropped (11-1=10@10) 100
- Clicker participation 50
- Laboratory 250
Total Points 1000
You must complete the laboratory to pass the course. There is no set quota of any particular grade. You can see the distribution of grades from the last several years under the Exams link on the website. I will assign final course grades, in consultation with your teaching assistants, taking into account participation in discussion and laboratory activities along with your numerical score.